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The 1991 Acoustic Surface Reverberation Experiment 
(ASREX 91) took place in November and December off the coast of 

British Columbia. As part of this experiment, three moorings were 

deployed to characterize the environmental background. The 

moorings consisted of a meteorological/oceanographic mooring 
designed to measure surface meteorology, current and temperature 
in the upper 120 meters, and nondirectional wave parameters and 

two wave moorings which were instrumented with pitch-roll buoys 
to characterize the directional wave spectrum. This report presents 
results from these three moorings. The conditions seen during the 
experiment were extremely rough, with wind speeds at 3.4m above 
the water surface reaching a maximum of 22 m/s and wave heights 
reaching a maximum of over 10 meters. The air-sea flux of heat was 
strongly cooling, and the mixed layer deepened over the course of 

the experiment from approximately 40 to approximately 70 meters. 
Spectra of the temperature showed a strong semidiurnal tidal signal 
associated with temperature excursions of several degrees C. The 

velocity signal showed strong inertial oscillations with amplitudes 
of 30-50 cm/s Weaker low-frequency and semidiurnal tidal signals 
were also seen. The waves were very strong with significant wave 
heights of 5-6 meters persisting for up to 2 weeks at a time. Waves 
were generally out of the south or the west. 
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1. Introduction 

The 1991 Acoustic Surface Reverberation Experiment (ASREX 91) was 

designed to study processes causing degraded acoustic transmission in high sea 

states. The experiment took place in late 1991 and early 1992 off the coast of 

British Columbia. In support of this experiment, a group from the Woods Hole 

Oceanographic Institution deployed three moorings designed to provide the 

environmental background for the acoustic measurements made by other 

investigators. These moorings measured the meteorology, temperature structure 

over the top 120 meters of the water column, current velocity over the top 20 

meters, and the directional wave spectrum. The resulting data set provides an 

opportunity to examine the wintertime deepening of a mixed layer, and to 

evaluate the importance of surface gravity waves for this process. 

2. Mooring Information 

The mooring operations took place onboard the University of 

Washington's RIV Thomas G. Thompson. Deployment was on Voyage 4, sailing 

out of Seattle on 29 October 1991. Recovery was on Voyage 5, also sailing from 

Seattle, on 5 January 1992. The moorings were sited about 350 km west of 

Vancouver Island. Table 2.1 lists the location and duration of the three moorings. 

Figure 2.1 shows a bathymetric map of the area around the experiment site. A list 

of cruise participants appears in Appendix 1, and the chronology of the cruises is 

described in Appendix 2. 



Table 2.1: Locations and durations of the three moorings 

Buoy Deployment       Recovery Latitude Longitude 
DiscusBuoy     91103121:09    920107 14:18    49 13.45 N        131 51.88 W 

(WHOI-920) 
Seatex 91110105:50    Surface Buoy    4909.10N        13153.30W 
(WHOI-921) 911204 19:00 

Mooring: 
920107 23:11 

Endeco 91110204:50   920108 18:04   49 08.25 N       13147.42W 
(WHOI-923) 

On 1 December 1991, telemetry data from System Argos revealed that the 

Seatex buoy had gone adrift. The buoy was recovered on 4 December by the 

Canadian destroyer HMCS Huron. Upon recovery it was found that the Seatex 

buoy appeared to have been intentionally detached from the mooring and the 

surface tether had been cut. Information about this incident is given in more detail 

in Appendix 4. 

The WHOI moorings were designed by and set by members of the Upper 

Ocean Processes Group (UOP) and the Ocean Acoustics Lab (OAL) at Woods 

Hole. Mooring diagrams are in figures 2.2 through 2.4. A summary of the 

instrumentation on the discus mooring is given in table 2.2. 
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Figure 2.1: Map of ASREX 91 Experiment Site 
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Figure 2.2: Mooring Diagram. Discus Mooring. 
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Table 2.2:  Instrumentation on the Discus mooring 

Instrument 
Type 

Serial 
Number 

Sample 
Rate(sec) 

Depth 
(meters) 

VAWR 0723 900 Surface 

IMET 60 Surface 

TPOD 3699 450 2 

VMCM 1405 112.5 5 

VMCM 0201 1125 10 

VMCM 0773 112.5 15 

VMCM 0873 1125 20 

TPOD 3702 450 40 

TPOD 3662 450 60 

TPOD 3700 450 80 

TPOD 3667 450 100 

TPOD 3705 450 120 



3. Data Presentation 

3.1 Meteorology during ASREX 91 

Meteorological Observations 

Meteorological data was recorded using a Vector-Averaging Wind 

Recorder (VAWR) with a 15 minute record rate. A second meteorological 

instrument package, an Improved Meteorological (IMET) system, also recorded 

data for a period of about one month, but its battery power, normally recharged 

by solar panels, failed as a result of too little sunlight on 5 December 1991 at 

midnight. The IMET system had a one minute record rate. 

Tables 3.1.1-3.1.2 summarize the sensors, their accuracy, and the sampling 

strategy for each of the packages. Table 3.1.3 shows a schematic of how the 

VAWR sampled each sensor during the 15 minute recording interval. Note that 

while the wind and radiation sensors recorded over the entire interval, the relative 

humidity and barometric pressure are sampled for a very short period of time in 

the middle of the recording interval. 

A check of the time base for the VAWR found 392 missing or incorrect 

clock counts. The data was interpolated over these gaps. The final processed data 

file had a total of 6455 records at 15 minute intervals between 91-11-01 00:07:30 

UTC and 92-01-07 08:07:30 UTC. Figure 3.1.1 through 3.1.5 show time-series of 

meteorological data recorded by the VAWR and IMET. Displayed are wind 

velocity north and east, sea temperature, air temperature, barometric pressure, 

relative humidity, short wave and long wave radiation. IMET data is represented 

with a dashed line, and VAWR data with a solid line. A magnetic variation of 

21.4° was applied to the data from both instruments. 



The IMET data were found to agree very well with the VAWR data in 

general, although several small, systematic differences were found. The VAWR 

recorded wind speeds about 9% higher than the IMET. The IMET relative 

humidity was found to be about 1% higher than the VAWR with rms differences 

of order 1-2%. The barometric pressure also showed a systematic offset, with the 

VAWR being about 0.8 MB lower than the IMET.    Except for the wind sensors, 

these differences were within the sensor specifications. Comparison of these 

differences with meteorological observations taken aboard the Thompson was 

made, but the differences were not resolvable. For purposes of the flux 

calculations reported here, the VAWR data will be taken as correct. 

Air-Sea Fluxes 

Fluxes of momentum, sensible heat, and latent heat for the Vancouver data 

site were computed from the meteorological variables using the stability- 

dependent bulk aerodynamic formulae of Large and Pond (1981; 1982). The net 

shortwave radiation is computed using an albedo of 0.06. The net longwave 

radiation is estimated using sea surface temperature, air temperature and the 

mixing ratio from Clark et al., 1974. This formula also includes a cloud-correction 

function which depends on the cloud cover. The cloud cover n was estimated 

from the incoming shortwave radiation, by comparing the observed radiation to 

clear-sky radiation predicted from astronomical theory (List, 1984) assuming some 

atmospheric transmission coefficient. An atmospheric transmission coefficient of 

0.7 was used, and compared well with observed short wave radiation from the 

VAWR during the few clear-sky days over the course of the deployment. Night- 



time values of cloud cover were estimated by linear interpolation between the 

nearest two daytime values. 

Time series of the heat fluxes computed from the VAWR are shown in 

Figures 3.1.6 through 3.1.10. From top to bottom, the sensible, latent, net 

shortwave, net long wave and total heat flux in W/m2 are shown. Figures 3.1.11 

through 3.1.15 show the wind stress time series computed from the VAWR. From 

top to bottom, the eastward wind stress, northward wind stress, wind stress 

magnitude, wind stress direction (towards), and the nondimensional stability 

parameter z/L . L is the Monin-Obhukhov length -CpTu^/KgQ , (where cp is the 

specific heat, T is the temperature , u* the friction velocity, g is gravity, K is the 

Von Karman constant, and Q is the heat gained by the atmosphere from the 

ocean) are shown. Large negative values of L mean that the atmospheric 

boundary layer is convectively unstable, so that the shear of the velocity is 

reduced from a logarithmic profile. 

Figure 3.1.16 shows the rotary spectrum of the wind stress (solid 

represents clockwise rotation, dashed counterclockwise rotation), and the 

spectrum of the sea-surface temperature, air temperature, shortwave radiation, 

barometric pressure and relative humidity. Other than the shortwave radiation, 

which shows a distinct set of peaks at the first, second, and third harmonics of the 

diurnal frequency, there are no significant peaks. 

Figure 3.1.17 shows the precipitation measured by the IMET system. The 

sensor used was an R.M Young self siphoning rain gauge, which emptied itself 

upon reaching a level of 5 cm. Over the course of the deployment, the gauge 

emptied itself 2 times, on 3 November and 16 November. 
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Parameter Sensor Type Accuracy Record Time 

Wind Speed R.M. Young 
3-cup 
Anemometer 

+ /- 2% 
above 
0.7 m/s 

Vector Averaged 

Wind 
Direction 

Integral Vane 
w/vane follower 
WHOI/EG&G 

+/- 1 bit 
5.6 degrees 

Vector Averaged 

Insolation Pyranometer 
Eppley 8-48 

+/- 3% 
of reading 

Averaged over 
record interval 

Long Wave 
Radiation 

Pyrgeometer 
Eppley PIR 

+/- 10% Averaged over 
record interval 

Relative 
Humidity 

Vaisala 
Humicap 0062HMP 

+/- 2% RH 3.515 Seconds 
Average 
Note 1 

Barometric 
Pressure 

Paroscientific 
Model 216-B-101 

+/- 0.2 
mbars 
wind < 20 m/s 

2.636 Seconds 
Average 
Note 1 

Sea 
Temperature 

Thermistor 
Thermometrics 
4K @ 25 degrees C 

+/- 0.005 
degrees C 

Averaged over 
1/2 record time 
Note 2 

Air 
Temperature 

Thermistor 
Yellow Springs 
#44034 
5K @ 25 degrees C 

+/- 0.2 
degrees C 
wind > 5 m/s 

Averaged over 
1/2 record time 
Note 3 

Notes: 

1. Relative Humidity and Barometric Pressure are averaged in the 
middle of the recording interval for the time noted. 

2. Sea temperature is measured during the first half of the recording 
interval. 

3. Air temperature is measured during the second half of the recording 
interval. 

Table 3.1.1: Meteorological Sensor Specifications. Vector Averaging Wind 
Recorder (VAWR) Deployed on Discus Buoy. 
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IMET (Improved Meteorological Record)  (60 second record interval) 

Parameter Sensor Type Accuracy Record Time 

Wind Speed R. M. Young 
propeller 
Anemometer 

±2% 
above 
0.7 m/s 

Scalar average 
over 1 min 

Wind Direction 9 bit encoder 
KVH compass 

±1 bit 
0.7 degrees 

Scalar average 
over 1 min 

Insolation Pyranometer 
Eppley PSP 

± 3% 
of reading 

Averaged over 
record interval 

Long Wave 
Radiation 

Pyrgeometer 
Eppley PIR 

± 10% Averaged over 
record interval 

Relative 
Humidity 

Rotronics 
MP-100F 

± 2% RH Averaged over 
record interval 

Barometric 
Pressure 

Air   DB1-A ± 0.2 mbars 
wind < 20 m/s 

Averaged over 
record interval 

Sea 
Temperature 

PRT  1k ± 0.005 
degrees C 

Averaged over 
record interval 

Air Temperature PRT  1k ±.005 
degrees C 
wind > 5 m/s 

Averaged over 
record interval 

Table 3.1.2:  Meteorological Sensor Specifications.    Improved Meteorological system 
(IMET) Deployed on Discus Buoy. 
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VAV/R sensor averaging periods 

Record Interval 

East 

North 

Rotor 

Vane 

Compass 

Short Wave 

Relative Humidity* 

Barometric Press.' 

Sea Surface TemptT| 

Air Temperature"' 

Longwave 

Time 
End of Interval 

* Relative humidity sensor is on for 7 seconds and counted for 3.515 seconds 

' Barometric Pressure sensor is on for 4.39 seconds and counts for 2.636 seconds 
tT Sea surface temperature is averaged during the first half of the record rate 
Actual averaging interval is half the record rate minus 1.7578125 seconds 
(delay and settle time from SST to AT) 
r" Air temperature is counted for the second half of the averaging interval. The 
air temp average interval is half the record rate minus 1.7578125. 

Recorded compass and vane information is the last sample taken in the record 
interval. 

Table 3.1.3: Schematic of VAWR Sensor Averaging Periods. 
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Figure 3.1.15    Wind Stress Time Series from VAWR. 
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3.2 Temperature and Density Structure during ASREX 91 

Sea temperatures were measured by the VAWR, by six Brancker 

temperature recorders (TPODs) at depths of 2,40, 60, 80,100, and 120 meters, 

and by four Vector Measuring Current Meters (VMCMs) at 5, 10,15, and 20 

meters. VMCMs recorded data every 112.5 seconds, and TPODs recorded every 

450 seconds. 

Each temperature sensor was calibrated in the lab before and after the 

experiment, with the exception of TPOD 3700, which did not recieve a post- 

cruise calibration. Because data comparisons for the shallow instruments looked 

good using pre-cruise calibrations, all but Brancker 3662, at 60m, were 

processed with pre-cruise calibrations. 

Figure 3.2.1 is a contour plot of all the temperature data from the moored 

array instruments. Data was filtered using a 24-hour running mean to remove the 

semidiurnal tide signal, and subsampled at 900 second intervals to produce a 

uniform time-series for the contour plot. 

Time-series and spectra of temperature at each depth are presented in 

figures 3.2.2 through 3.2.11. In the upper frame of each of these plots, 

temperature is represented along the y axis and time (UTC) along the x axis. The 

lower frame contains the spectra. The long arrows on the lower frames indicate 

the frequency of the semidiurnal tidal peak and the short arrows show the 

frequency of the Coriolis peak. Confidence limits are displayed at the bottom of 

the frame. Captions indicate instrument type and depth. Unlike the previous plot, 
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the data here is not smoothed, so that the strong signals associated with the 

semidiurnal tides are readily visible. 

CTD casts were taken to a depth of about 375 meters. Five casts were 

taken before deployment of the moored array, and two casts were taken after 

recovery.   Information on CTD cast dates and locations is contained in Appendix 

3. Profiles of CTD temperature, salinity, and density are shown in figures 3.2.12 

through 3.2.17. These plots show that over the course of the deployment, the 

mixed layer depth increased from about 40 meters to about 80 meters as indicated 

by the temperature data alone. 

The temperature records in the upper 40 meters of the water column show 

relatively little short-time variability. The temperature records at 60, 80, 100 and 

120 meters show strong peaks at the frequency of the semidiurnal tide. The tidal 

signal appears to be strongest near the top of the main thermocline. 
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3.3. Current Velocities during ASREX 91 

Currents were measured by VMCMs at 5,10,15, and 20 meters. The 

current meters recorded at a rate of once every 112.5 seconds. A time-base 

checking program was used to correct missing data and data with invalid time- 

words before any further processing was carried out. The final data set consists 

of 51713 reconds beginning at 0000Z 1 November, 1991 and concluding at 

0801Z on 7 January, 1992. 

Time series stick-plots of the water vectors at each depth are in figures 

3.3.1 through 3.3.5. Data was filtered over a 48 hour period and decimated to 2 

hours for the vector plots. Northerly velocities are represented by vectors 

pointing toward the top of the page. 

Progressive vector plots for all four VMCMs are in figure 3.3.6. Velocity 

data was filtered over 8 hours and decimated to 4 hour values before plotting. 

Figures 3.3.7 through 3.3.10 are combined time-series and spectra for 

currents at each depth. These plots show unfiltered data.   The upper frame for 

each plot represents the north and east velocities along the vertical axes and time 

(UTC) along the horizontal axis. The lower frame contains the spectra, with a 

solid line indicating the clockwise component and a dashed line indicating the 

counter-clockwise component. As for temperature plots, the frequency of the 

Coriolis parameter and the semidiurnal tide are shown on the plots, and 

confidence limits are displayed. There are significant peaks associated with both 

the tide and Coriolis frequency. 
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clockwise  component.  Long  arrow indicates  semi-diurnal  tidal  frequency, 
short  arrow  indicates  coriolis  frequency. 
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3.4. Measurement of Ocean Surface Gravity Waves During ASREX 91 

During the experiment, wave-measuring sensors were deployed on three 

buoys by the Upper Ocean Processes Group. The discus buoy from which the 

meteorological measurements were made was also outfitted with a Datawell 

Hippy 40 in the well, measuring heave, pitch, and roll. The buoy recorded 900 

seconds of data at 4 Hz every 6 hours, and wrote the data to the IMET system. 

Data was acquired beginning on 31 October every 6 hours until the IMET system 

went down due to low battery on 5 December 1991. The directional response of 

this buoy is still being studied. Although an initial characterization of the 

response is presented in Gnanadesikan and Terray (1994), there are still major 

gaps in our understanding of the transfer function at low frequencies. Directional 

spectra from this buoy will therefore not be presented in this report. 

Two dedicated pitch-roll buoys were also deployed during ASREX. The 

first of these buoys to be deployed was a Wavescan™ made by Seatex A/S of 

Trondheim, Norway. A Datawell Hippy 120 sensor on this buoy 2048 samples 

heave, pitch and roll at a rate of 1 Hz every 3 hours. Buoy heading was recorded 

simultaneously from a two-axis fluxgate compass. The time series of good data 

from this buoy begins at 0600Z on November 1 November, 1991 and continues 

until 1800Z on 4 December 1991 when it was recovered by the HMCS Huron. 

The Wavescan buoy is described in more detail in Barstow et al., 1991. As noted 

in Gnanadesikan and Terray (1994) the response of the Seatex buoy to surface 

gravity waves is the best studied and may be easily corrected by modelling the 

buoy as a damped harmonic oscillator. The Seatex was thus taken as the standard 

against which other buoys were compared. 
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The second pitch/roll buoy was a Wavetrack™ manufactured by 

Endeco/YSI of Marion MA. This buoy measured vertical acceleration using a 

gimballed accelerometer and two electrolytic tilt sensors. The buoy recorded 

2048 samples of heave, north tilt, and east tilt at a rate of 2 Hz every 12 hours. 

The time series of good nondirectional data from this buoy begins at 0000Z on 3 

November 1991 and continues until 1200 Z on 8 January. The directional 

response of this buoy has been studied by Gnanadesikan and Terray (1994), who 

found that it is not as simple as that of the Seatex buoy. This report will present 

some directional results from the Endeco buoy, but will not present an exhaustive 

listing of the spectra. 

Figure 3.4.1 shows time series of wave parameters measured from the 

Seatex buoy. Figure 3.4.1a and 3.4.1b show time series of the significant wave 

height and period, computed as follows. The period between successive zero-up 

crossings of the sea-surface height was defined as corresponding to a single 

wave. The height of this wave was defined as the difference between the 

maximum and minimum surface heights. The period of the wave was defined as 

the time interval between the sucessive zero-up-crossings. The significant wave is 

defined as the height of the highest 1/3 of the waves. The significant wave period 

is the mean period of the highest 1/3 of the waves. The height of the largest wave 

seen during the 2048 second observing period is shown in Figure 3.4.1c. During 

the deployment we see that the waves were in general quite large, with a peak 

significant height of 10.03 meters at 1800Z on 16 November 1991. The largest 

wave seen during the entire deployment (15.97 meters in height) was seen at this 

time. 
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Figure 3.4.2 shows the evolution of the energy in the surface wave field as 

a function of frequency over the course of the ASREX 91 experiment. Contours 

are logio spectral density, The heavy dashed lines show some of the clearly 

identifiable events corresponding to locally generated windsea for which the 

frequency of the peak of the spectrum increases with time. The straight heavy 

solid lines show identifiable swell propagation events for which the frequency of 

the peak of the spectrum decreases with time. 

Directional wave spectra were calculated using the Maximum Entropy 

Method of Lygre and Krogstad (1986). Corrections to the measured direction of 

orientation due to buoy tilt were calculated and applied. The tilts were then 

rotated into geographic coordinates. The spectra and cross-spectra of the heave 

and tilt were calculated with corrections being made for sensor response and 

buoy transfer function. The resulting heave and tilt spectra, quadrature spectrum 

of heave and north and east tilt, and cospectrum of north and east tilt were input 

to the Maximum Entropy routine of Lygre and Krogstad, and directional spectra 

were produced. The MATLAB code used to produce these spectra is given in 

Appendix 5. If the resulting spectra are integrated over frequency, one may get a 

sense of how the wave energy depends on direction. Figure 3.4.3a shows a 

contour plot of the wave energy as a function of direction measured from the 

Seatex buoy over 1 November- 21 November. The plot shows the direction from 

which the waves were propagating. 3.4.3b shows the wind direction during this 

time period. Figures 3.4.3c and d repeat 3.4.3a and b for 21 November to 5 

December. During the deployment, the winds were generally from the west and 

the south, and the wave climate seems to mirror this fact. The directional 

distribution wave energy in general reflects the wind direction, but there are some 

clear cases where there are differences. 
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Figure 3.4.4 shows comparisons of wave parameters measured from the the 

Seatex, Endeco and Discus buoys during the month of November, 1991. In all 

plots the data from the Seatex buoy is shown as a solid line, that from the Endeco 

as open circles and that from the discus as an x. Figure 3.4.4a shows the 

significant wave height measured from the three buoys and 3.4.4b shows the 

frequency at the peak of the spectrum. The agreement between the three buoys is 

excellent with the standard deviation of the difference between the Seatex and 

Endeco buoys being 0.25 m and the standard deviation of the difference 

between the Seatex and discus buoys being 0.34m. 

Wave directions were computed from the Seatex and Endeco buoys at 

various frequencies. Figure 3.4.4c and 3.4.4d. Figure 3.4.4c shows the direction 

associated with the spectral peak from the Seatex and Endeco buoys. The two 

buoys agree most of the time, but show occasional differences. Gnanadesikan and 

Terray (1994) argued that these differences were most likely due to uncertainties 

in the buoy transfer function. Figure 3.4.4d shows the wave direction in a 

frequency band from 0.25-0.33 Hz. The dashed line shows the wind direction. 

Clearly in this band, the waves track the wind very closely. 

Figures 3.4.7-3.4.38 show a subset of the Seatex directional wave spectra. 

Four spectra are shown on each day (eight were taken) at 00,06,12, and 18Z. 

64 



ASREX 91:Significant Wave Height (Seatex Buoy) 

l    |    |    |    I    I    I    I    I    I    I    I    I    I    I    I    I    I    I    I    I    I    I    I    I    I    I    I    I    I    I    I    I 
2      4      6      8     10    12    14    16    18    20    22    24   26    28    30     2      4 

NOV DEC 

(a) 

ASREX 91:Significant Wave Period (Seatex Buoy) 

_L I L 

I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I 
2      4      6      8     10    12    14    16    18    20    22    24    26 

I   I   I   I 
28    30 

NOV 
2      4 

DEC 

(b) 

ASREX 91:Maximum 
l                 I                 I 

Wave Height (Seatex Buoy) 
I                 I                 I 

14.0- L 
10.0- \A/\i L 
6.0- 

/A^A^%/V     \lV            U    V^Vv^^ — 

I I I I I II II II I I II I  I  I  I  II  I  I  I  I  I  I  I  I  I  I  I  I 
4      6      8     10    12    14    16    18    20    22    24    26 

NOV 

(c) 

28    30 2      4 

DEC 

Figure 3.4.1: Wave parameter time series from Seatex Buoy. 
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ASREX 91:Log10 Surface Wave Energy vs.  Frequency (Seatex) 
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Figure 3.4.2: Evolution of wave field vs frequency during ASREX 91. Data 
are taken from the Seatex buoy and run from 0300Z  1  November 1991 
through  1800Z 4 December 1991. (a) Contours of logio spectral density  1- 
21 November, (a) Contours of logio spectral density 21 November - 5 
December. 
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ASREX 91:Log10 Surface Wave Energy vs. Direction (Seatex) 
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Figure 3.4.3: Directional Wave Evolution during ASREX 91 from Seatex 
buoy, (a) Logio wave energy vs. direction 1    - 21 November, (b) Wind 
direction 1 - 21 November, (c) Logio wave energy vs. direction 21 
November - 5 December, (c) Wind direction 21 November - 5 December. 
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ASREX 91:Log10 Surface Wave Energy vs. Direction (Seatex) 

360. 

E 
o 

o 
u 

' Hi   *'     If     r.-       > , '        "      •      '     ">\ ... .'  .        i 

180. - 

90. - 

1   . ' It *     ' 

IV   <s 

I 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1  
22 24 26 28 30 2 4 6 8 10 

NOV DEC 

(c) 
Wind Direction 

24 26 

NOV DEC 

(d) 

Figure  3.4.3   (continued) 
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69 



-1.40 -1.00 -0.60 
Log10 Frequency in Hz 

November 1,1991   00Z 

-1.40 -1.00 -0.60 

Log10 Frequency in Hz 

November 1,1991   06Z 

CO 

8  360. 
en 
a> 
Q  270. 
c 

§   180. 

c 
o 
o 

90. 

-1.40 -1.00 -0.60 
Log10 Frequency in Hz 

November 1,1991   12Z 

-1.40 -1.00 -0.60 
Log10 Frequency in Hz 

November 1,1991   18Z 

Figure 3.4.5: Directional wave spectra, Seatex buoy. Contours are 0.01, 0.05, 
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Figure 3.4.6: Directional wave spectra, Seatex buoy. Contours are 0.01, 0.05, 
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Figure 3.4.7: Directional wave spectra, Seatex buoy. Contours are 0.01, 0.05, 
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Figure 3.4.8: Directional wave spectra, Seatex buoy. Contours are 0.01, 0.05, 
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Figure 3.4.9: Directional wave spectra, Seatex buoy. Contours are 0.01, 0.05, 
0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.10: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.11: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.12: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 

77 



I  360. 
L. 

Q  270. - 
c 

E 
o 
v_ 

u_ 
c 

o 
0) 

180. - 

90. 

-1.40 -1.00 -0.60 
Log10 Frequency in Hz 

November 9,1991   00Z 

-1.40 -1.00 -0.60 
Log10 Frequency in Hz 

November 9,1991   06Z 

-1.40 -1.00 -0.60 
Logi0 Frequency in Hz 

November 9,1991   12Z 

-1.40 -1.00 -0.60 
Log10 Frequency in Hz 

November 9,1991   1 8Z 

Figure 3.4.13: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.14: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.15: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.16: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.17: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.18: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.19: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.20: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.21: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 

86 



-1.40 -1.00 -0.60 
Log10 Frequency in Hz 

November 18,1991   00Z 

f   T   I 
-1.40 -1.00 -0.60 

Logio Frequency in Hz 

November 18,1991   06Z 

CO 

$  360. 
t_ 

CD 
Q  270. 

c 
o 

180. - 

90. - 

o 
CD 

.b       0. 
Q I I 

-1.40 -1.00 -0.60 
Log10 Frequency in Hz 

November 18,1991   12Z 

-1.40 -1.00 -0.60 
Log10 Frequency in Hz 

November 18,1991   18Z 

Figure 3.4.22: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.23: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.24: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.25: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.26: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.27: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 

92 



-1.40 -1.00 -0.60 

Logio Frequency in Hz 

November 24,1991   00Z 

-1.40 -1.00 -0.60 

Log10 Frequency in Hz 

November 24,1991   06Z 

S  360. 
CD 

Q  270. 
c 

E 
o 
u. 
c 
o 
o 

180. - 

90. - 

-1.40 -1.00 -0.60 
Log10 Frequency in Hz 

November 24,1991   1 2Z 

1.40 -1.00 -0.60 
Log10 Frequency in Hz 

November 24,1991   18Z 

Figure 3.4.28: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.29: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.30: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.31: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.32: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.33: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.34: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 

99 



en 
8  360. 

-1.40 -1.00 -0.60 

Log-io Frequency in Hz 

December 1,1991   00Z 

-1.40 -1.00 -0.60 
Log10 Frequency in Hz 

December 1,1991   06Z 

-1.40 -1.00 -0.60 
Log-io Frequency in Hz 

December 1,1991   12Z 

-1.40 -1.00 -0.60 

Log-io Frequency in Hz 

December 1,1991   18Z 

Figure 3.4.35: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.36: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.37: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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Figure 3.4.38: Directional wave spectra, Seatex buoy. Contours are 0.01, 
0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500. 
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29 Oct 91 0121 

30 Oct 91 0858 

0948 

Appendix 2: Chronology of Events 

All times noted are UTC 

Deployment Cruise: R/V Thomas Thompson Cruise No. TT004. 

Date Time 

Underway on Cruise TT004 from Seattle 

Arrive at mooring area 

Commence bottom survey using hydrosweep. 

1450-1803    Release Testing on wire. 

1840 Commence launch of Miami Acoustics Mooring. 

2319 Anchor over for Miami Acoustics Mooring 

31 Oct 91      0015-0130   Anchor Position Survey 

0220 Launching sonabuoy, listening to Acoustics mooring. 

0315-0415    Release testing on wire. 

0457-0523   CTD Cast. 

0537 Deploy Acoustic spar buoy (W.K. Melville). Tethered 
to ship. 

0550-0649   Release Testing on wire. 

0705 Recover Acoustic spar buoy. 

1535 Commence launching Discus mooring. (WHOI 
mooring #920). 

2109 Anchor over, Discus mooring. 

2200-2300   Meteorological observations to compare ship readings 
with buoy. 

2305 Begin Anchor Position Survey. 

1 Nov 91       0045 Finish anchor position survey. 
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0222 Commence launching Seatex mooring. (WHOI 
mooring #921) 

0520 Anchor over, Seatex mooring. 

0643 Commence CTD cast. 

0709 Deploy Acoustic spar buoy (Time back not recorded). 

0712 CTD Aboard 

1752 Begin anchor position survey. 

1906 Finish anchor position survey. 

2145-2350   Release testing on wire. 

2Nov91       0130 Commence launching Endeco mooring (WHOI 
mooring #923). 

0450 Anchor over, Endeco mooring. 

0512 Anchor on bottom, Endeco mooring. 

0535 Begin anchor position survey. 

0807 Finish anchor position survey. 

1600 Small boat launch to remove two temporary floats 
from Endeco buoy. 

1609 Small boat aboard, floats successfully removed. 

1740 Bubble population spar buoy (M. Su) deployed, 
tethered to ship. 

2040 Bubble population spar buoy recovered. 

2040 Breaking wave tripod buoy (E Monahan, UConn) 
deployed, tethered to ship. 

2204 Breaking wave tripod buoy recovered. 

2240 Acoustic spar buoy deployed, tethered to ship. 

3 Nov 91       0210 Acoustic spar buoy recovered. 
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0225 Bubble population spar buoy deployed, tethered to 
ship. 

0547 Bubble population spar buoy recovered. 

0626-0636 CTDCast. 

1638 Acoustic spar buoy deployed, tethered to ship. 

2017 Acoustic spar buoy recovered. 

2025 Bubble population spar buoy deployed, tethered 
to ship. 

4 Nov 91      0200 Bubble population spar buoy recovered. 

0203-0223   CTD cast. 

0525 Set course for Seattle. 

5 Nov 91       1700 Arrive Seattle. 

Moorings at Sea Recording Data. 

1 Dec 91        1340 Seatex adrift. 

3 Dec 91       1900 G. Tupper contacts Commander Johnson, (Royal 
Canadian Navy) at Esquimault, B.C. for possible 
recovery assistance. 

4 Dec 91       1949 Seatex buoy recovered by HMCS Huron. 

2100 Commitment made to divert HMCS Huron, 170 miles 
from buoy, to attempt recovery. 

5 Dec 91       0000 IMET data collection shut down due to insufficient 
sun. 

2 Jan 92       0700-0800   Sometime during this hour the met tower on the 
Endeco buoy broke. Later examination revealed a 
faulty weld. 

Recovery Cruise: R/V: Thomas Thompson Cruise No. TT005 

5 Jan 92       0452 Underway on Cruise TT005 from Seattle. 
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6 Jan 92        1622 Release fired, Miami Acoustics Mooring. 

2201 Miami Acoustics Mooring recovered. 

7 Jan 92       0238-0311 CTD cast near Discus Mooring. 

1418 Release fired. Discus Mooring. 

1846 Discus Mooring recovery completed. 

2052 Bubble population spar buoy deployed, tethered to 
ship. 

2222 Bubble population spar buoy recovered. 

2311 Release fired, remaining part of Seatex mooring. 

8 Jan 92        0121 Remaining Seatex subsurface mooring recovery 
completed. 

1804 Release fired, Endeco mooring. 

2106 Endeco mooring recovery completed. 

2148 Bubble population spar buoy deployed, tethered to 
ship. 

9 Jan 92        0100 Bubble population spar buoy recovered. 

0200 Underway to Seattle. 

0745 Arrive Seattle. 
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Appendix 3:    CTD Cast Information 

l.Pre-deployment Casts R/V Thomas G. Thompson Cruise TT004 Leg 1 

Station TT004001     Thu Oct 31 04:58:05 1991 
Latitude N49 12.2409 to N49 12.3439 
Longitude W131 43.8676 to W131 43.5234 

Station TT004002    Fri Nov 01 06:49:11 1991 
Latitude N49 11.8471 to N49 11.8288 
Longitude W131 54.6433 to W131 54.4354 

Station TT004003     Sat Nov 02 05:38:10 1991 
Latitude N49 08.4530 to N49 08.6263 
Longitude W131 45.5396 to W131 45.4347 

Station TT004004    Sun Nov 03 06:12:54 1991 
Latitude N49 25.1633 to N49 25.4107 
Longitude W131 42.0551 to W131 41.9707 

Station TT004005     Mon Nov 04 02:09:29 1991 
Latitude N49 16.0861 to N49 16.0843 
Longitude W131 33.9778 to W131 33.7746 

2. Post-deployment Casts R/V Thomas G. Thompson Cruise TT005 Leg 1 

Station TT005001    Tue Jan 7 03:14:46 1992 
Latitude N49 15.3600 
Longitude Wl31 51.9404 

Station TT005002    Wed Jan 8 04:47:53 1992 
Latitude N49 08.9403 
Longitude W131 46.7333 
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Appendix 4: The Seatex Mooring Failure 

The Seatex buoy was set on 1 November at 0520Z. On 1 December, 
information from system Argos made it clear that the Seatex buoy was adrift. The 
buoy was recovered by the HMCS Huron at 1949Z on 4 December. The 
Canadian Navy then transported the buoy to the marine facility at the University 
of Washington, Seattle. 

A schematic of the surface expression of the mooring is shown below in 
Figure A.3.1. A nylon tether with attached floats came up to the surface and lay 
along the surface for about 70 meters. This tether was then attached to a stainless 
steel chain which was attached to a clamp on the buoy. The clamp was in turn 
attached to a stainless steel rod which ran through the buoy. The buoy hull 
consisted of two floatation elements, each of which was a half-toroid (sliced 
vertically) which were clamped around the central well with an outer steel band, 
rod ran in between the two halves of the floatation hull with the clamps keeping 
it in place. 

Line cut here 

Chain going to shackle Clamp 

Attachment 
to surface 
buoy 

Figure A.4.1: Figure Schematic of the surface expression of the Seatex mooring 
and of the attachment of the mooring line to the buoy. 
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When the buoy was examined on the dock at Seattle, it became clear that 
something very unusual had occurred. The entire assemblage for attaching the 
mooring, including the stainless steel rod and both clamps, was missing, as was a 
similar rod and clamp assembly on the other side of the buoy to which no lines 
had been attached. The floatation elements are jacketed with very soft plastic 
which can be scratched with a blunt instrument. The hull showed no signs of the 
stainless steel threaded rod having worked free on either side. 

Upon recovery, it was discovered that the surface line had been cut just 
above the last float. Analysis of the line end, carried out by Bryce Prindle at 
WHOI, revealed that the line had been cut by something which produced strong 
tensile and torsional forces. The cutting instrument was blunt, indicating the line 
was probably not cut with a knife or by fish teeth. Some yarns in the cut end 
retained their original structure and were fused together, indicating possible 
tensile failure. The yarns in the mooring line were tightly wrapped around a 
central mass of fibers, suggesting strong rotational motion was involved in the 
failure. 

At this point the most likely hypothesis is that the surface line was cut by a 
propellor. Possibly in an effort to unfoul the boat which cut the line, or else as a 
calculated act of theft, the clamps and threaded rod assemblies on the buoy were 
then removed intentionally. This would explain the lack of damage to the 
floatation hull. 
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Appendix 5:    MATLAB Code for Calculating Directional Wave Spectra 
from the Seatex Buoy 

function [dth,sw,f]=memsl(x) 
% memsl.m Computes the five spectral coefficients from a Seatex wave record 
%       using an fft with cosine tapering at the edges and then averaging 
%       over nw points. The results are then inserted into a maximum 
%       entropy routine of Lygre and Krogstad (JPO 16:2052-2060) 
%       Input has form sampno, heave, pitch, roll. 
%       Output has format [dth sw f] dth the directional wave 
%       spectrum, sw the nondirectional spectrum and 
%        f the array of frequencies. 
%       Modified 8/21/92 to correct for directional changes 
%       due to tilting. 

nw=16; 
heave=x( ,2) 

fn=((0:1023)*.5)/1024 
Txyi=(.43.A2)./(.43~2 
Txy=l.0./Txyi; 
ht=ones(1:1024); 
it=34:1024; 
ht(it)=(l.0-1.0 

(1.0-1.0 

■fn."2+2*i*.l*fn) 

/(30.8*fn(it) 
/(170*fn(it)) 

^2-sqrt(2)*i*1.0./(30.8*fn(it)) ) .' 

thp=x( 
thr=x( 
thc=x( 

,3)*pi/180. 
,4)*pi/180. 
,5)*pi/180. 

nx=tan(thp); 
ny=sin(thr).*(cos(2*thp)./cos(thp))./sqrt(cos(thp).A2-sin(thr)."2] 
nn=real((nx+i*ny).*exp(i*thc)); 
ne=imag((nx+i*ny).*exp(i*thc)); 

trif(1:128)=sin((0:127)*pi/2 56)."2; 
trif(129:1920)=1.0*ones(12 9:192 0); 
trif(1921:2048)=trif(128:-1:1); 
trif=trif'; 

ffh=fft(heave.*trif)/sqrt(2048); 
ffn=fft(nn.*trif)/sqrt(2048) ; 
ffe=fft(ne.*trif)/sqrt(2048); 

f=zeros(1:1024/nw)'; 
cll=zeros(1:1024/nw) 
c22=zeros(1:1024/nw) 
c33=zeros(1:1024/nw) 
c23=zeros(l:1024/nw) 
ql2=zeros(1:1024/nw) 
ql3=zeros(1:1024/nw) 

for n=l:64 
for j=l:nw 
jl=(n-1)*nw+j; 
f(n)=f(n)+fn(jl)/nw; 
cll(n)=cll(n)+abs(ffh(jl)*ht(jl)),A2; 
c22(n)=c22(n)+abs(ffn(jl)*Txy(jl)).A2; 
c3 3(n)=c33(n)+abs(ffe(jl)*Txy(jl))."2; 
ql2(n)=ql2(n)-imag(conj(ffh(jl)*ht(jl))*ffn(jl)*Txy(jl)) 
ql3(n)=ql3(n)-imag(conj(ffh(jl)*ht(jl))*ffe(jl)*Txy(jl)) 
c23(n)=c23(n)+real(conj(ffn(jl))*ffe(jl)*abs(Txy(jl)A2)) 

end 
end 

dl=ql2./sqrt(ell.*(c22+c33)); 
d2=ql3./sqrt(ell.*(c22+c33)); 
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